CONSOLIDATION OF TECHNICAL, SAFETY AND HUMAN RESOURCES IN EURASIAN RAILWAY TRANSPORT CORRIDORS

Monograph
Reviewers:
Prof Dr hab Aleksander SŁADKOWSKI, Silesian University of Technology, Poland
Prof Dr hab Valery SAMSONKIN, State Economy and Technology University, Ukraine

The publication of this Open Access book has been funded by the European Commission FP7 Post-Grant Open Access Pilot.

VGTU Press TECHNIKA book No 2375-M
http://leidykla.vgtu.lt

doi: 10.20334/2375-M

This is an open-access monograph distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The material cannot be used for commercial purposes.

© VGTU Press TECHNIKA, 2016
CONTENT

OVERALL SUMMARY .. 10
Abbreviations .. 13

INTRODUCTION ... 15

1. EURASIAN RAILWAYS NETWORK APPLICATION FIELD 17
 1.1. Background and problem definition .. 17
 1.2. Objectives and methodology .. 21
 1.3. Integrity of railway safety and interoperability 22
 1.4. Essential requirements for safety and health in railway operation 23
 1.5. Compatibility of the Eurasian railway systems 26

2. SELECTION AND ANALYSIS OF EUROPE-ASIA RAILWAY INFRASTRUCTURE .. 30
 2.1. Railway infrastructure constituents and elements 30
 2.2. Analysis of the current situation of the railway infrastructure 74
 2.3. Chapter conclusions .. 78

3. RAIL SAFETY AND SECURITY SYSTEMS OF EUROPEAN AND ASIAN COUNTRIES .. 79
 3.1. Comparison analysis of rail safety and security systems 79
 3.2. Railway traffic risk analysis and assessment 84
 3.3. Compatibility of rail safety policies .. 84
 3.4. Member states’ institutional framework 88
 3.5. Regulations on Common Safety Methods 89
 3.6. Applying Analytic Hierarchy Process to assess traffic safety risk of railway infrastructure 91
 3.7. Demonstration of compliance with safety requirements 106

4. SAFETY CERTIFICATION AND AUTHORISATION IN THE EURASIAN RAILWAYS . 130
 4.1. Certification problems and issues concerning the separation of railway operations from infrastructure 130
 4.2. Options of certification procedures ... 132
 4.3. Certificate to access railway infrastructure 132
 4.4. Authorization of rail vehicle ... 133
5. TECHNICAL ASPECTS OF RAILWAY SAFETY AND INTEROPERABILITY IN TRANS-EURASIAN LANDBRIDGE .. 135

5.1. Applied global intelligent systems for rail safety and security 135
5.2. Interfacing of rail vehicle devices with track-side train detection system 139
5.3. Reliability of wheel-rail impact measurement results by trackside control equipment 144
5.4. Hot axle-box/hot wheel detection systems .. 148
5.5. Features and tendencies of rail vehicle axle-box heating .. 150
5.6. Rolling stock active safety and passive safety ... 158
5.7. Investigation of wheelset slip and slide control problems of locomotives with AC
traction motors .. 159
5.8. Research on diesel locomotives with DC traction motors wheelsets’ slipping and sliding
control .. 173
5.9. Rail vehicle passive safety ... 187
5.10. Railway technical and operational safety ... 189
5.11. Rolling stock maintenance quality influence on railway safety 190
5.12. Investigation on improving diesel-electric locomotives’ maintenance system 193
5.13. Modelling of constant inter-failures of renewed passenger multi-units fleet 204

6. EDUCATION AND TRAINING ISSUES FOR EURASIAN LAND BRIDGE SUPPORT AND DEVELOPMENT .. 219

6.1. Introduction .. 219
6.2. Comparison of rail education systems in countries along the Trans-European land bridge ... 221
6.3. Harmonization of the rail educational standards in Europe 225
6.4. Competences in rail education .. 226
6.5. Gender issues ... 230
6.6. Rail e-learning ... 232
6.7. Identified disadvantages, gaps, and barriers .. 235
6.8. Future research needs and priorities ... 236
6.9. Future aims and trends ... 238

7. DISCUSSION AND OVERALL CONCLUDING REMARKS .. 239

7.1. Considering the rail traffic safety and interoperability ... 239
7.2. Considering the technical aspects and rolling stock maintenance 242
7.3. Considering staff training and education ... 243

REFERENCES .. 245
LIST OF TABLES

Table 1. Categories of conventional axle-load tracks based on the permitted load per axle of trains in traffic (in accordance with UIC) ... 31
Table 2. Qualitative impact of axle load increase on the constituents and elements of a railway system–requirements .. 32
Table 3. Qualitative impact of train length and train weight increase to the constituents and elements of a railway system–requirements ... 33
Table 4. Railway track gauges worldwide .. 34
Table 5. Qualitative impact of train features on the constituents and elements of a railway system–requirements .. 36
Table 6. Crossing countries of the Europe-Asia railway connection routes–Railway segments per country materializing the routes .. 45
Table 7. Routes and stations with different types of traction within transport corridors 59
Table 8. The comparison matrix of the factors increasing the threat “human injury” (threat T1) . 101
Table 9. The weight values of the factors increasing the threat “human injury” (threat T1) 102
Table 10. The weight values of the factors increasing the threat “derailment” (threat T2) 102
Table 11. The weight values of the factors increasing the threat “collision of rail vehicle” (threat T3) . 103
Table 12. Assessment of the weight of the threat “collision of rail vehicle” criteria on the railway lines . 104
Table 13. Assessment of the threat “collision of rail vehicle” risk level 105
Table 14. Comparison of traffic risk levels of two Lithuanian Railway lines 105
Table 15. Mapping of safety methods to railway system life cycle stages (Impact Assessment 2013) 107
Table 16. Mapping of safety methods to risk assessment activities (Impact Assessment 2013) 108
Table 17. PDCA for railway safety management (Tao Tang et al. 2009; El-Koursi et al. 2007) 110
Table 18. Comparison of railway safety policy systems in EU (Impact Assessment 2013) 117
Table 19. Total number of national rules in EU countries (Impact Assessment 2013) 119
Table 20. Authorization categories used in the assessment (Impact Assessment 2013) 120
Table 21. Processing phases of harmonization, certification, and authorization in 2011–2025 (Impact Assessment 2013) ... 121
Table 22. Valid values of criteria that limit forces measured by TACE systems (similar to ATLAS-LG) for detection of defective wheels in Eurasian railways 146
Table 23. Distribution of temperatures faulty axle-boxes of LG trains in 2011-2013 156
Table 24. The peculiarities of rail education systems in several countries located along the Trans-Asian transport corridor ... 222
Table 25. Future research needs and priorities in relation to human resources 236
LIST OF FIGURES

Figure 1. Indicative existing alternative railway routes for the connection of Western/Central Europe with Asia ... 20
Figure 2. Design / Building / Development system / Use .. 27
Figure 3. Electrification systems of railway lines in Europe .. 39
Figure 4. Electrification systems of railway lines in Central Asia 40
Figure 5. Electrification systems of railway lines in Central and East Asia 41
Figure 6. Initial analysis of significant change (El-Kouri et al. 2006) 89
Figure 7. Risk assessment criteria of technical system approach (El-Kouri et al. 2006). 90
Figure 8. PDCA principle cycle (Tao Tang et al. 2009) .. 110
Figure 9. Trackside ERTMS contract in per cent by world-wide regions 140
Figure 10. Hot axle-box detection systems in Europe Railways (Eisenbrand 2011). .. 149
Figure 11. Principle scheme of hot box detection equipment 152
Figure 12. Dynamics of HABD halted LG trains with impermissibly hot rolling stock axle-boxes. 153
Figure 13. Dynamics of the average idle time of LG trains halted by HABD in 2011–2013. 154
Figure 14. Dynamics of LG trains halted in 2013 by danger levels 154
Figure 15. Distribution of axle-box breakdowns of LG freight wagons 155
Figure 16. Locomotive adhesion coefficient dissipation dependence on locomotive speed in different seasons ... 161
Figure 17. Diesel-electric powered locomotive characteristics in traction mode: 162
Figure 18. Wheel to rail force redistribution scheme (in traction mode) of locomotive drive wheelset axle ... 163
Figure 19. Different schemes of electric traction motor dislocation influence on the wheel–force-to rail ... 163
Figure 20. Redistribution scheme of locomotive bogie to rail force 164
Figure 21. Speed-torque characteristics of the DC and AC traction motor. 166
Figure 22. Circuit diagram of diesel-electric powered locomotive (AC/AC current system) drive, when one frequency converter is used to power three AC traction motors. 167
Figure 23. The same type natural mechanical characteristics of asynchronous traction motors at the same static resistance torque 168
Figure 24. Control system of asynchronous engines with individual frequency converters. 168
Figure 25. Artificial asynchronous mechanical characteristics of asynchronous motor when ATM frequency rotation speed control method is applied 169
Figure 26. Circuit diagram of diesel-electric powered locomotive (AC/AC electric system) automatic wheelsets anti-slip and slide control system process parameters computer drive 170
Figure 27. Asynchronous traction motor with internal optical encoder: 1 is encoder 171
Figure 28. Optical encoder scheme .. 172
Figure 29. Distribution of normal and tangential stresses in the rail-wheel contact area in Polach (2005) method ... 177
Figure 30. A circuit diagram of a series-wound DC traction motor .. 179
Figure 31. A circuit diagram of a separately excited shunt-wound DC traction motor 179
Figure 32. Speed-torque characteristics of the separately excited shunt-wound (1) and series-wound (2) DC traction motors ... 180
Figure 33. The effect of speed-torque characteristics on the tractive force of a locomotive, depending on adhesion .. 181
Figure 34. A scheme of a compensating system of the wheel-to-rail forces' redistribution in a locomotive operating in the traction mode .. 182
Figure 35. A circuit diagram of the relay wheelsets' slip and slide protection system in a conventional diesel-electric locomotive (of DC/DC type) ... 183
Figure 36. A circuit diagram of automatic control of wheelsets' slip and slide parameters in diesel-electric powered locomotive (of DC/DC type) .. 185
Figure 37. The curves demonstrating the 'spread' in DC traction motors' armature current in the diesel-electric locomotive 2M62M ... 185
Figure 38. Load characteristics of a diesel-electric powered locomotive's (of DC/DC type) traction generator $U_g = f(I_g)$... 186
Figure 39. Maintenance Influence on the safety of freight wagon [scheme] .. 192
Figure 40. Dependence of number of electric multi-unit one wagon failures on wagon's average age ... 208
Figure 41. Decrease of the electric multi-unit fleet's average age during the fleet renewal process ... 209
Figure 42. Dependence of the decrease in electric multi-unit failures on the number of newly-acquired electric multi-unit wagons .. 209
Figure 43. Failure intensity dependence on diesel multi-unit mileage .. 211
Figure 44. Failure intensity of diesel multi-unit fleet when the fleet is renewed according to the formula "2+2+1” .. 213
Figure 45. Approximation of diesel multi-unit failure intensity by continuous function 214
Figure 46. Approximation of diesel multi-unit failure data by splines of the third degree 216
Figure 47. A rail education model in Europe (in general) .. 221
Figure 48. A rail education model in Asia (in general) ... 221
Figure 49. New employee training system ... 223
Figure 50. KORAIL six-phase study model ... 223
Figure 51. The occurrence of competence gaps ... 228
Figure 52. Graduates' competence gaps ... 229
Figure 53. The number of women in the Donetsk railways of SE “Ukrzaliznytsya” (Ukraine) 230
Figure 54. The number of women in the JSC “RZhD” (Russia) .. 230
Figure 55. Model of development rail e-learning courses .. 233
Figure 56. Web-technologies which may be used in the personnel qualification system for the railway industry .. 234
Figure 57. Video channel of the Moscow State University .. 234
Figure 58. Webinar interface in education ... 235
The investigation described in this monograph was conducted within the framework of the FP7 project NEAR2 – Network of European-Asian Rail Research Capacities – from 2012 to 2014. One of the main tasks of the NEAR2 project was the creation of 10 concept documents that would map the current situation along the Eurasian Railway land bridge in specific fields of expertise (based on the 10 poles of the European Rail Research Network of Excellence or EURNEX) and define future research needs based on identified gaps in technology and knowledge.

The monograph has been developed within the activities of three NEAR2 working groups (WG): WG6 “Safety and Security”, WG8 “Infrastructure and Signalling,” and WG10 “Training and Education”. So, the content of the monograph is based on the above-mentioned concept documents of the NEAR2 project. The project had multiple aims:

1. To define topics related to railway safety and security that affect the achievement of interoperability and rolling stock operation of the European-Asian railway corridors
2. To identify the problems, needs, gaps, and barriers that exist and degrade the regular rail movement of goods between Europe and Asia
3. To identify future research needs and priorities that will support the formulation of a research agenda for the Eurasian land bridge

The monograph is based on the outcomes of the discussions that took place within the ambit of the NEAR2 project. The monograph serves to bridge the gaps in knowledge and technology in order to improve technical interoperability, traffic safety regulations and risk assessment, and rolling stock maintenance system. It also seeks to analyse railway infrastructure more efficiently and to identify interoperability problems, staff training and educational issues in the railways of the Eurasian countries.

The national rail networks of various Eurasian countries evolved heterogeneously over the past century, and relevant national technical interoperability, safety regulations, and environment protection regulations were put in place, even before relevant international coordination existed.
OVERALL SUMMARY

Three railway systems (geographical regions) were considered in this research work: the first, the railways of the countries in the European Union; the second, the Russian, Ukrainian, and Belarusian railways; and the third, the railways of Asian countries.

The monograph comprises seven chapters dealing with the particularities of rail safety regulation in different countries, technical aspects of safety and interoperability, infrastructure and signaling, rolling stock maintenance problems, locomotive slip and slide control, and training and education in Eurasian Railways.

Scope of the monograph

The present monograph aims at identifying and presenting a framework of actions that will allow the formulation of an appropriate scientific background and partnership that will, in turn, support the creation of a competitive Eurasian railway connection. Thus, the monograph focuses on the following:

1. Network application field, background and problem definition, objectives and study methodology, revealing of integrity of railway safety and interoperability; mapping of the current situation of infrastructure, and signaling; and staff training in Eurasian railways (Chapter 1).
2. Analysis and description of Eurasian railway infrastructure constituents and components: maximum axle load, maximum train length, track gauge, static and dynamic clearance, maximum speed both of passenger and freight trains, variety of traction and signaling systems, particularities of track maintenance (Chapter 2).
3. Comparison analysis of rail safety and security systems in European and Asian countries; problems of traffic safety risk assessment; compatibility of rail safety policies in different Eurasian countries, and harmonization progress of safety policy (Chapter 3).
4. Description of rail safety certification stages and processes in European Union countries; certification time and cost; characterization of certification procedure; single rail vehicle certificate; description of certificate to access railway infrastructure; the authorization of rail rolling stock (Chapter 4).
5. Explanation of technical aspects of railway safety in the Trans-Eurasian landbridge: progress of applying global intelligent systems; rolling stock devices in connection with the trackside system; rolling stock active and passive safety requirements and assessment; rolling stock maintenance quality impact on rail safety; research on locomotive driving wheel slip and slide control systems; modeling of inter-failures of renewed rail vehicle fleet and improvement of locomotive maintenance system (Chapter 5).
6. Railway human resources, training and education issues; verifying the necessity to create the integrated/ harmonized rail education and training system in the
Eurasian space based on international experiences; the rail educational standards, knowledge management tools and principles, e-learing practices (Chapter 6).

7. Overall concluding remarks: identification of future research needs and priorities that will support the formulation of a relevant research agenda for the Eurasian land bridge; identification of common future research projects related to the main topics of the monograph, as well as to the combination of the interests of the Eurasian rail industry and undertakings (Chapter 7).

ACKNOWLEDGEMENTS

This scientific work has been supported by the FP7 program Project NEAR² 2012–2014 (grant agreement number: 314254A). The project coordinator was the Centre for Research and Technology Hellas (CERTH), Hellenic Institute of Transport (HIT). The Project Manager was Dr Maria Boile, and Associate Project Manager Ms. Annie Kortsari.

A significant part of the contributions included in the monograph came from the work undertaken by researchers and scientists from the following European and Asian institutions:

1. Association “EURNEX” e.V., the European Rail Research Network of Excellence: Prof. Dr. h. c. Wolfgang H. Steinicke, CEO and Secretary General of “EURNEX” in 2007–2015, now – Honorary Secretary General & In-house Consultant at “EURNEX”. Prof. Markus Hecht and Prof. El-Miloudi El-Koursi are members of “EURNEX” Standing Committee.

2. Centre for Research and Technology Hellas (CERTH): Ms. Maria Chatziathanasiou.

3. Tongji University (IRRT), China: Prof. Weida Xie and Prof. Han Bin, and Mr. Yingfei Tu.

4. Euro-India Research Centre (EIRC): Ms. Sourabha Rani Theophilus, Mr. Karthik Kumar, and Ms. Sandhya Venkatesh.

5. Czech Technical University in Prague (CVUT): Mr Vit Malinovský.

8. French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR): Prof. El-Miloudi El-Kourisi and Mr. Eric Bessmann.