E. Michnevič, L. Syrus, R. Belevičius

TEORINĖ MECHANIKA

STATIKA

Mokomoji knyga

Vilnius „Technika“ 2004

Knyga parengta remiantis Vilniaus Gedimino technikos universiteto studijų programos ir rekomenduojama pagrindinių studijų studentams, siekti išsukimai savarankiškai susipažinti su statikos metodų teoriniais pagrindais.

Leidinį rekomendavo Fundamentinių mokslų fakulteto studijų komitetas

Recenzavo: prof. habil. dr. M. Leonavičius,
prof. habil. dr. J. Atkočiūnas

VGTU leidyklos „Technika“ 628 mokomosios metodinės literatūros knyga

ISBN 9986–05–661–6
© E. Michnevič, L. Syrus, R. Belevičius, 2004
© VGTU leidykla „Technika“, 2004
PRATARMĖ ... 5
IŠVADAS .. 6
1. JĖGOS IR JĖGŲ SISTEMOS ... 11
 1.1. Jėga ... 11
 1.2. Jėgos momentas ... 14
 PLOKŠČIOJI JĖGŲ SISTEMA ... 17
 1.3. Plokščioji susikertančių jėgų sistema .. 17
 1.3.1. Susikertančių jėgų sudėtis .. 17
 1.3.2. Triųjų jėgų teorema ... 20
 1.3.3. Susikertančių jėgų sistemos pusiausvyros sąlygos 21
 1.3.4. Varinjono teorema ... 22
 1.4. Plokščioji lygiagrečiųjų jėgų sistema ... 25
 1.4.1. Lygiagrečių veikiančių jėgų sudėtis .. 25
 1.4.2. Jėgų poros ... 27
 1.4.3. Jėgų porų sudėtis ir pusiausvyros sąlyga 32
 1.4.4. Lygiagretusis jėgos perkėlimas ... 34
 1.5. Plokščioji bet kaip išdėstytų jėgų sistema ... 36
 1.5.1. Plokščiosios jėgų sistemos redukavimo būdai 36
 1.5.2. Plokščiosios bet kaip išdėstytų jėgų sistemos pusiausvyros sąlygos 39
 1.5.3. Plokščiosios lygiagrečiųjų jėgų sistemos pusiausvyros sąlygos 41
 ERDVINĖ JĖGŲ SISTEMA ... 43
 1.6. Jėgos ir jėgų poros erdvėje ... 43
 1.6.1. Jėgos momentas erdvėje ... 45
 1.6.2. Jėgų pora erdvėje ... 48
 1.6.3. Lygiagretusis jėgos perkėlimas erdvėje ... 50
 1.6.4. Jėgų porų sudėtis erdvėje. Erdinės jėgų porų sistemos pusiausvyros sąlygos ... 51
 1.7. Erdinė bet kaip išdėstytų jėgų sistema .. 53
 1.7.1. Erdinės jėgų sistemos redukavimo būdai 53
 1.7.2. Erdinės bet kaip išdėstytų jėgų sistemos pusiausvyros sąlygos 58
 1.7.3. Erdinės lygiagrečiųjų jėgų sistemos pusiausvyros sąlygos 59
 1.7.4. Varinjono teorema, taikoma erdinėi jėgų sistemai 60
 1.8. Ryšių modeliavimas .. 60
 1.9. Statiškai išsprendžiami ir statiškai neišsprendžiami uždaviniai 64
2. KŪNU SISTEMOS ... 66
 2.1. Kūnų sistemos pusiausvyra ... 66
 2.2. Santvaros .. 69
3. SVORIO CENTRAS ... 77
 3.1. Lygiagrečiųjų jėgų centras ... 78
 3.2. Kūno svorio centras .. 80
 3.3. Plokščios figūros svorio centras .. 82
 3.4. Linijos pavidalo kūno svorio centras ... 83
4. TRINTIS .. 85
 4.1. Sausojo slydimo trintis ... 85
 4.2. Riedėjimo trintis ... 89
LITERATŪRA ... 91

PRIEĐAI
 1 PRIEĐAS. SI SISTEMOS MATAVIMO VIENETAI, NAUDOJAMI
 MECHANIKOJE ... 92
 2 PRIEÐAS. TRINTIES KOEFICIENTŲ TIPINĖS REIKŠMĖS 93
PRATARMĖ

Mechanika – nuolat tobulėjantis fundamentinis mokslas, apimantis klasikinę ir naujausias, dažnai dar iki galo nesuformuluotas, teorijas, kuriamė plačiai taikomi šiuolaikiniai skaičiavimo ir matematinio modeliavimo metodai, pritaikomos naujausios technikos galimybės eksperimentams, tyrimams bei virtualiajams – kompiuteriniams įvairių konstrukcijų ir procesų modeliavimui atlįkti. Aukštosiose technikos mokyklose susipažinimas su šiuo mokslu prasideda nuo teorinės mechanikos kurso. Teorinė mechanika – dalykas, kurio studijavimas leidžia būsimiems inžinieriams įsisavinti klasikinės mechanikos teorijos pagrindus, padeda suformuoti inžinerinį mąstymą, išgyti uždavinių sprendimo igūdžių, būtinų studijuojant tokius inžinerinius dalykus, kaip medžiagų atsparumas, medžiagų mechanika, mašinų ir mechanizmų teorija ir t. t.

Technikos universiteto šiuolaikiinių studijų programose numatomos paskaitos ir savarankiškas papildomos literatūros nagrinėjimas. Todėl autoriai nutarė parengti teorinės mechanikos statikos dalies paskaitų konspektą ir visus kurse nagrinėjamus teorijos klausimus aptarti daug išsamiau negu tai įmanoma padaryti per paskaitoms skirtą laiką.

Autoriai bus dėkingi skaitytojams už pastabas ir dalykinius siūlymus.